Torse forming vector fields and exterior concurrent vector fields on Riemannian manifolds and applications
نویسندگان
چکیده
منابع مشابه
On Concircular and Torse-forming Vector Fields on Compact Manifolds
In this paper we modify the theorem by E. Hopf and found results and conditions, on which concircular, convergent and torse-forming vector fields exist on (pseudo-) Riemannian spaces. These results are applied for conformal, geodesic and holomorphically projective mappings of special compact spaces without boundary.
متن کاملConcurrent vector fields on Finsler spaces
In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...
متن کاملMonotone and Accretive Vector Fields on Riemannian Manifolds
The relationship between monotonicity and accretivity on Riemannian manifolds is studied in this paper and both concepts are proved to be equivalent in Hadamard manifolds. As a consequence an iterative method is obtained for approximating singularities of Lipschitz continuous, strongly monotone mappings. We also establish the equivalence between the strong convexity of convex functions and the ...
متن کاملVector Fields on Manifolds
where n = dim M and 6» = ith Betti number of M ( = dim of Hi(M; Q)). Thus the geometric property of M having a nonzero vector field is expressed in terms of the algebraic invariant xM. We will discuss extensions of this idea to vector ^-fields, fields of ^-planes, and foliations of manifolds. All manifolds considered will be connected, smooth and without boundary; all maps will be continuous. F...
متن کاملClosed conformal vector fields on pseudo-Riemannian manifolds
∇XV = λX for every vector field X. (1.2) Here ∇ denotes the Levi-Civita connection of g. We call vector fields satisfying (1.2) closed conformal vector fields. They appear in the work of Fialkow [3] about conformal geodesics, in the works of Yano [7–11] about concircular geometry in Riemannian manifolds, and in the works of Tashiro [6], Kerbrat [4], Kühnel and Rademacher [5], and many other aut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2013
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2013.06.002